Chapter 1 Review Guide

Function Notation

Do <u>lots and lots</u> of odd number problems in the book within sections 1.1-1.4. If you run into problem, ask (me or a friend)! Redo various worksheet problems from 1^{st} week of class.

Reading this document should only be a small portion of your study time.

Recommended Study Method

• Relations – ordered pair with an input and an output; a relationship between 2 sets of number

- Function a special type of relation where an input only has <u>one</u> output
 - Vertical Line Test if any vertical line on a graph intersects more than
 1 point, then not a function

• Function Notation – Ex.
$$f(x) = x^2 + 2x$$

$$\leftarrow$$
 think as $f(\Box) = \Box^2 + 2\Box$

Function Composition

o
$$f \circ g(x) = f(g(x))$$

• Ex. $g(x) = x + 2$ and $f(x) = x^2 + 2x$
 $f(g(x)) = (x + 2)^2 + 2(x + 2) = \text{(simplify...)}$

$f(x) = \frac{1}{(5-x)} + x^2 - x$ g(x) = x + 2Find $f \circ g(x)$

Functions

Relations

Find g(f(x))

Interval Notation

Used to specify domain and range of a function.

- Ex. [0, 10) means all number from 0 to 10, including 0, not including 10
- Convention
 - o [smaller number, bigger number]
 - o Infinity always with ")" or "("
 - o Ex. (-∞, -3] U (10, ∞)

Graph
$$f(x) = |x - 3| + 2$$

What is the domain and range using interval notation?

Domain/Range

- Domain set of all inputs (x's) of relation
 - o Consider all x-coordinate of points in a graph
- Range set of all output (y's) of relation
 - o Consider all y-coordinate of points in a graph

Parent Functions

- Constant Function f(x) = c
- Linear Function f(x) = x
- Absolute Value Function f(x) = |x|

Transformations

	Vertical	Horizontal
Translation k>0: up h>0: right	$f(x) + k$ $(x,y) \to (x,y+k)$	$f(x-h)$ $(x,y) \to (x+h,y)$
Reflection x-axis: vertical y-axis: horizontal	$-f(x)$ $(x,y) \to (x,-y)$	$f(-x)$ $(x,y) \to (-x,y)$
Stretch / Shrink (a>1) (a<1)	$af(x)$ $(x,y) \to (x,ay)$	$f(\frac{1}{a}x)$ $(x,y) \to (ax,y)$

- Graph f(x) = |x 3| + 2
- a) Translate f(x) up by 5
- b) Reflect f(x) over the yaxis
- c) Reflect f(x) over the xaxis and then translate down by 3
- d) Horizontally stretch f(x) by 3 and then translate to the right by 2
- Translation/Reflections: Rigid transformation (pre/post graphs are "congruent")

Line Equations

- Slope: $m = \Delta x/\Delta y \leftarrow \text{Rate of change}$
 - Example: Given a graph with x-axis of distance and y-axis of cost, explain the meaning of the slope of the graph
- Equations Forms

	Equation	Example
Slope Intercept Form	y = mx + b	y = 2x + 5
		slope 2 and y-intercept at (0,5)
Point Slope Form	$(y - y_1) = m(x - x_1)$	(y - 3) = -2(x + 4)
		slope of -2 going through point (-4, 3)

- \circ Example: Given points (2, 5) and (-3, 12), write the equation of the line through them in both slope intercept form and point slope form. What is x when y = -20?
- Modeling
 - Linear Regression: method to calculate line of best fit between data
 - Know how to use calculator to generate y=mx+b for set of data
 - See bit.ly/TI84_Intro
 - Correlation value r:
 - -1: strong negative slope correlation
 - 0: no correlation
 - 1: strong positive slope correlation

Press STAT and highlight the CALC column.

System of Linear Equations

- Solution to system of equations: the common intersection between <u>all</u> graphs
- Solving 3x3 (i.e. 3 equation, 3 variable) linear equation
 - Strategy: Remove 1 variable to reduce a 2x2 system
 - Solve by elimination Make coefficient of variable term opposite and then add both equations
 - Solve by substitution Solve for a variable, then substitute this variable in other equations
- Special cases
 - o 0=0 infinite solutions
 - In case of 3x3, express the solution space where all three planes intersect [ex. (x, 3-x, 2)]
 - 0=1 no solutions