
Part IV- Chapter 16 Random Variables 

Random variable 

 

 

     Discrete random variable 

     Continuous random variable 

A variable, denoted by a capital letter (X, Y, Z etc.), whose value is 

a numerical outcome of a random event.  

The theoretical data (possible outcomes) of a probability model. 

     Has a finite number of possible outcomes. 

     Takes all values in an interval of numbers (infinite or bounded). 

Probability model A function that associates a probability P  

with each value of a discrete random variable X, denoted P(X = x), 

or with any interval of values of a continuous random variable. 

Probability histogram Pictures the probability distribution of a discrete random variable. 

(a relative frequency histogram for a very large number of trials) 

Density curve Pictures the probability distribution of a continuous random variable 

(normal distributions are 1 type) 

Expected value of a random 

variable. 

The mean over the long run of a random variable. 

If the random variable is discrete, multiply each possible value by 

the probability that it occurs, and find the sum:    

μx = E(X) = Σxi pi 

Variance of a random variable. The expected value of the squared deviation from the mean 

σ 
2

x = Var(X) = Σ(xi – μx)
2
 pi 

Standard deviation of a random 

variable 

Describes the spread of the model 

σ x = SD(X) = 
 Var X

 

μa+bX = _____ 

σ
 
a+bX = _____ 

a + bμX              (a and b are constants) 

bσX 

μX+Y = _____        μX-Y = _____ 

σ
 
X±Y = _____ 

μX + μY                 μX - μY 
2 2  X Y    , if X and Y are independent.  

   (Pythagorean Theorem of Statistics) 

X1 + X2 ≠ ____ 

 

μX1+X2 = _____    μX1-X2 = _____ 

σ
 
X1±X2 = _____ 

2X , (X1 & X2 are distinct random variables with the same μ and σ. 

          They aren’t like terms)  

μX1 + μX2 = 2μX                 μX1 - μX2 = 0 

2 2

1 2  X X    =  
22 X  = 2X  

If two independent continuous 

random variables have Normal 

models, 

So does their sum or difference. 

Part IV- Chapter 17 Probability Models 

Bernoulli trial 1. two possible outcomes                  (“success” & “failure”) 

2. probability of success is constant         p                  q = 1 – p  

3. trials are independent (or sample < 10% of population) 

If number, X, of Bernoulli trials 

until next success  

[measuring until success] 

Then Geometric probability model, Geom(p): 

P(X = x) = q 
x-1

p 

(Expected # of trials until success) 
1

p
         

2

q

p
   

If number of successes, X, in n 

Bernoulli trials 

[number of successes, no when] 

Then Binomial probability model, Binom(n, p): 

  
!

,
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(Expected # of successes) np            npq    

Assumptions Theoretical mathematical requirements 

(independence, large sample, etc.) 

Conditions Practical guidelines that confirm (or sometimes override) 

assumptions. 

When using the Geometric or 

Binomial probability models 

check that you have ________ 

 

 

the 3 requirements of Bernoulli trials. 

The Binomial probability model 

becomes difficult/impossible for 

_________.  Fortunately it can 

be approximated by _________ 

as long as we meet the _______ 

Condition that _____________ 

 

 

large n. 

a Normal probability model 

Success/Failure 

we expect at least 10 successes and 10 failures: 

                                 np ≥ 10     and    nq ≥ 10   

On the AP Exam students are 

required to ______, not just 

_____ the conditions.  This 

means _________________ 

 

check 

state 

using the values given in the question to show your work! 

Part V- Chapter 18 Sampling Distribution Models (SDMs) 

Proportion 

 
Ratio of: 

number of successes

total
 for categorical data. 

[think percent] 

We want to know the true 

population proportion (mean),__, 

but are often forced to 

work/estimate with a sample 

proportion (mean), ___ . 

 

p  (μ)                            

 

 

p̂  (x̄ ) 

 

                                                  

Sampling variability 

(sampling error) 

No sample fully and exactly describes the population; sample 

proportions and means will vary from sample to sample.   

It is not just unavoidable – it’s predictable! (with SDMs) 

Sampling Distribution Model 

(SDM) 

Shows how a statistic (sample proportion or mean) would vary in 

repeated (think infinite) samples of size n.   

 

We used to focus on the data, and derive the statistics from it.  Now 

we focus on the statistic itself.  The sample proportion (or mean) 

becomes our datum, and in our imaginations we compare that 

statistic to all other values we might have obtained from all the other 

samples of size n we might have taken. 

The sample proportion, p̂ , does 

not have a binomial distribution 

because it is not the _________. 

But the SDM for a proportion 

appears to be _____ 

 

 

number of successes 

 

unimodal 



and _____.  When certain 

conditions are met, the _______ 

is a good SDM for a proportion. 

roughly symmetric 

Normal model 

Assumptions / Conditions for 

using a Normal model as the 

SDM for a proportion: 

Assumptions: 

1. Independent - sampled values must be independent of each other. 

     Conditions: 

     a) Randomization – SRS or at least representative and not biased. 

     b) 10% Condition – If sampling w/o replacement 

                                     Then n ≤ 10% of the population. 

2. Sample Size - n, must be large enough. 

     Conditions: 

     a) Success/Failure - np ≥ 10  and  nq ≥ 10.  

Since the number of successes 

in the sample, X, is _________, 

we can obtain the mean and SD 

of the sample proportion by 

multiplying the mean and SD of 

the Binomial by the constant 1/n 

to get: 

 

a Binomial random variable (n trials, probability p) 

 

ˆ( )p p               ˆ ˆ( ) ( )
pq

p SD p
n

    

 

         ,
pq

N p
n

 
  
 

 

When we can understand and 

predict the variability of our 

estimates with SDMs, ______ 

 

we’ve taken the essential step toward seeing past that variability, so 

we can understand the world. 

Means summarize 

____________ data 

 

quantitative 

As long as the observations are 

______, even if we sample from 

a skewed or bimodal population 

the _______________ tells us 

that the means (or proportions) 

of repeated random samples 

will tend to follow __________ 

as _______ 

 

independent 

 

Central Limit Theorem 

 

 

a Normal model 

the sample size grows. 

Central Limit Theorem (CLT) 

 
[the fundamental theorem of statistics] 

The sampling distribution model of the sample mean (and 

proportion) is approximately Normal for large n, regardless of the 

distribution of the population, as long as the observations are 

independent. 

Assumptions / Conditions for 

using a Normal model as the 

SDM for a mean: 

Assumptions: 

1. Independent - sampled values must be independent of each other. 

     Conditions: 

     a) Randomization – SRS or at least representative and not biased. 

     b) 10% Condition – If sampling w/o replacement 

                                     Then n ≤ 10% of the population. 

2. Sample Size - n, must be large enough. (More on this later) 

     Conditions: 

     a) For now, Think about your sample size in the context of what  

         you know about the population, and then Tell whether the  



         Large Enough Sample Condition has been met.  

Unlike proportions, if we know 

the true population mean, μ, we 

don’t automatically know the __  

 

 

standard deviation of the population, σ. 

For means the sampling 

distribution is centered at 

________ and its standard 

deviation declines with the  

________.  So the Normal 

Model representing the SDM 

for a mean is _____ 

 

 

the true population mean                ( )x   

square root of the sample size          ( ) ( )x SD x
n


    

         ,N
n



 
 
 

 

Law of Diminishing Returns 

 
Larger n yields smaller ( )x  therefore x  can tell us more about   

Unfortunately n only decreases ( )x  at a rate of 
1

n
 

Standard Error If we don’t know p or σ, then we must estimate the standard 

deviation of a sampling distribution with p̂ or s. 

     
ˆ ˆ

ˆ( )
pq

SE p
n

           ( )
s

SE x
n

  

Part V- Chapter 19 Confidence Intervals for Proportions 

SDM for a proportion when we 

don’t know p.   

We don’t know where to center our model and the best we can do 

for ˆ( )p  is the ˆ( )SE p   

The resulting model is: 
ˆ ˆ

,
pq

N p
n

 
  
 

   

However, this still doesn’t show us the value of p.  The best we can 

do is to reach out with the ˆ( )SE p  on either side of p̂  to create a 

confidence interval in an attempt to capture p. 

Statistical inference To use the sample we have at hand to say something about the world 

at large.  In this case, we utilize the SDM of p̂ to express our 

confidence in the results of any one sample. 

Confidence interval 

          [p-trap] 

offers a range of plausible values for a model’s parameter. 

For example: ˆ ˆ2 ( )p SE p   

One-proportion z-interval 

[Official Name give to this type 

of confidence interval] 

*ˆ ˆ( )p z SE p   

Margin of error  

(ME) 

How far the confidence interval reaches out from p̂  

 
ˆ ˆ* ( )p z SE p   

z
*
 Critical value – the number of standard errors to move away from 

the mean of the sampling distribution to correspond to the specified 

level of confidence. 

To calculate z* for a particular 

level of confidence…. 
1

*
2

confidence level
z invNorm

 
  

 
 

Assumptions / Conditions to (See your inference guide)  



check before creating (and 

believing) a confidence interval 

about a proportion: 

The more confident we want to 

be . . . 

 

the larger the margin of error must be. 

Every confidence interval is a 

balance between ____ and ____ 

 

certainty and precision. 

The time to think about your 

margin of error, to see whether 

it’s small enough to be useful, is 

 

 

when you design your study or experiment and decide on n. 

To get a narrower interval 

(decrease the ME) without 

giving up confidence, 

You need to have less variability in your sample proportion, p̂ ,  

by choosing a larger sample, n.   

Law of Diminishing Returns The larger the sample size, n, we have the narrower our confidence 

interval can be (at the rate of 
1

n
) 

To calculate the sample size, n, 

necessary to reach conclusions 

that have a desired margin of 

error (degree of precision) and 

level of confidence: 

Solve for n in: 

     * ˆ ˆpq
ME z

n
  

by substituting: 

ME = desired margin of error (as a decimal) 

z
*
 = critical value for desired level of confidence 

p̂ = estimate based on experience or 0.5 (most cautious) 
ˆ ˆ1q p   

Part V- Chapter 20 Testing Hypotheses About Proportions 

Are the data consistent with the 

hypothesized SDM for a 

proportion?  

We hypothesize a value, p0, to construct a model for the unknown 

true population proportion, p.   

0 0
0 ,

p q
N p

n

 
  
 

 

 

Then we test the sample proportion, p̂ , to see if it lends support to 

the hypothesis or casts doubt on the viability of the model.   

 

First find how many standard deviations p̂ is from p0 (you do 

remember the z-score from Unit I-F don’t you?) 

0
ˆ( )

ˆ( )

p p
z

SD p


      where 0 0ˆ( )

p q
SD p

n
  

 

Second use our standard normal model to change z-scores into 

percents like we did back in Unit I-F.  These percents/probabilities 

are now called P-values and give the probability of observing the 

sample proportion, p̂ , (or one more extreme) given the original 

model is true. 

Null hypothesis, H0 

[originull skeptical hypothesis] 

[the normal chance outcome] 

Proposes a parameter, p0, and hypothesized value for an original 

population model that nothing interesting happened, or nothing has 

changed.   H0: p = p0 (hypothesized value) 



Alternative hypothesis, HA 

[actual hypothesis] 

[that there is a real effect] 

Represents the change or difference that we are interested in (what 

you want to show), usually a range of other possible values. 

The position we will have to take if the results are so unusual as to 

make the null hypothesis untenable.  However, even when we reject 

the null hypothesis, we won’t know the true value of the population 

parameter. (that is why we follow up with confidence intervals) 

Two-sided alternative 

hypothesis 

HA: p ≠ p0        

We are interested in deviations in either direction away from the 

hypothesized parameter value. 

One-sided alternative 

hypothesis 

HA: p > p0  or HA: p < p0         

We are interested in deviations in only one direction away from the 

hypothesized parameter value. 

Hypothesis are about __ not __ parameters not statistics (so no hats) 

Hypothesis tests and confidence 

intervals share many of the 

same concepts. 

Both rely on sampling distribution models, and because the models 

are the same and require the same assumptions, both check the same 

conditions. 

Assumptions / Conditions for 

testing hypotheses about a 

proportion: 

(See your inference guide) 

One-proportion z-test A test of the null hypothesis by referring the statistic  

0
ˆ( )

ˆ( )

p p
z

SD p


      where 0 0ˆ( )

p q
SD p

n
  

to a standard normal model to find a P-value. 

P-value 

[Probability-value] 

[% in tail(s) for a z-score] 

The probability of observing a result at least as extreme as ours if 

the null hypothesis were true.  A small value indicates either that the 

observation is improbable or that the probability calculation was 

based on incorrect assumptions.  The assumed truth of the null 

hypothesis is the assumption under suspicion. 

How low a P-value do we need? Traditional: adopt a level of significance (alpha) of 10%,5%,1% etc 

Modern: think about what it says about the situation under  

              consideration, and then make a decision. 

A low P-value can never 

confirm that _______________, 

but it can convince us ________ 

 

the model is correct 

(beyond a reasonable doubt) that it is wrong. 

Follow up a rejection of a 

hypothesis with ____________ 

 

a confidence interval that estimates the true value of the parameter 

Am I surprised? 

How surprised am I? 

What would not surprise me? 

Should I reject the null hypothesis? 

What’s the P-value? 

Write a confidence interval for the parameter. 

4-steps needed for inference 

problems: 

(based on the College Board’s 

rubrics for the AP Exam) 

(See your inference guide) 

Part V- Chapter 21 More about Tests 

Alpha level, α 

 

The threshold P-value selected in advance that determines  

when we reject a null hypothesis, H0.   

If we observe a statistic ( p̂ ) whose P-value based on the null 



hypothesis is less than α, we reject that null hypothesis. 

Statistically significant When the P-value falls below the alpha level, we say that the test is 

“statistically significant” at that alpha level.   

(But this doesn’t necessarily have any practical importance.) 

Significance level The alpha level is also called the significance level, most often in a 

phrase such as a conclusion:  

“we reject the null hypothesis at the 5% significance level.” 

Don’t just reject/fail to reject __ 

at an _______ level.  Report the 

_________ as an indication of 

the strength of the evidence.  

H0 

Alpha/significance 

P-value 

When we perform a hypothesis 

test we can make mistakes in 

two ways: 
 

The more serious mistake is ___ 

Type I error – the null hypothesis is true, but we mistakenly reject it. 

Type II error – the null hypothesis is false, but we fail to reject it. 

 
 

depends on the situation. 

Type I error, α The error of rejecting a null hypothesis, H0, when in fact it is true  

     (also called a “false positive”).   

The probability of a Type I error is α, the chosen alpha level.   

(It happens when H0 is true but we’ve had the bad luck of drawing 

an unusual sample.) 

Type II error, β The error of failing to reject a null hypothesis, H0, when in fact it is false 

     (also called a “false negative”).   

The probability of a Type II error is β.  It is difficult to calculate 

because when H0 is false, we don’t know what value the  

parameter, p, really is.   

Power 1 – β    The probability of correctly rejecting a false null hypothesis, H0. 

Reducing α to lower Type __ 

error will move _____________ 

and have the effect of increasing 

the probability of a Type __ 

error, __,  and correspondingly  

reducing __________ 

I 

the critical value, p
*
, 

 

II 

β 

the power. 

Effect size p – p0        How far the truth, p, lies from the null hypothesis, p0. 

The larger the effect size, the 

_______ the chance of making a 

Type __ error and the greater 

the _______ of the test. 

 

smaller 

II 

power 

Whenever a study fails to reject 

its null hypothesis, _________. 

H0 may be false but our test is .. 

 

the test’s power comes into question. 

too weak to tell. 

If we reduce Type I error, we 

automatically must _________ 

Type II error.  But there is a 

way to reduce both: 

 

increase 

 

we need to make both SDM curves narrower → by decreasing the 

spread (SD) → by increasing n  (However the benefits are muted by 

the Law of Diminishing Returns) 

The ____________ gives us the 

answer to a decision about a 

hypothesis test 

 



parameter; the ___________ 

tells us the plausible values of 

that parameter. 

confidence interval 

You can approximate a ______ 

by examining the confidence 

interval.  Specifically, a 

confidence level of C% 

corresponds to _____________ 

hypothesis 

 

a two-sided hypothesis test with an α level of  100 – C%  

a one-sided hypothesis test with an α level of  
1

(100 %)
2

C  

Part V- Chapter 22 Comparing Two Proportions 

The sampling distribution of 

1 2
ˆ ˆp p is, under appropriate 

assumptions, modeled by …  

A Normal model with: 

       μ = p1 – p2          
1 1 2 2

1 2

1 2

ˆ ˆ( )
p q p q

SD p p
n n

    

Assumptions / Conditions for 

using a Normal model as the 

SDM for a difference between 

two proportions: 

(Also confidence intervals and 

testing hypotheses) 

(See your inference guide) 

Two-proportion z-interval 

(confidence interval for p1 – p2)  *

1 2 1 2
ˆ ˆ ˆ ˆ( ) ( )p p z SE p p     where 1 1 2 2

1 2

1 2

ˆ ˆ ˆ ˆ
ˆ ˆ( )

p q p q
SE p p

n n
    

Two-proportion z-test H0: p1 – p2 = 0. 

Because we hypothesize that the proportions are equal, we pool the 

groups to find an overall proportion: 

                             1 2

1 2

# #
ˆ

pooled

Success Success
p

n n





 

and use that pooled value to estimate the standard error: 

              1 2

1 2

ˆ ˆ ˆ ˆ
ˆ ˆ( )

pooled pooled pooled pooled

pooled

p q p q
SE p p

n n
    

Now refer the statistic  

               1 2

1 2

ˆ ˆ( ) 0

ˆ ˆ( )pooled

p p
z

SE p p

 



      

to a standard normal model to find a P-value. 

 


